An Alternative Mechanism of Glutamate Dehydrogenase Inhibition by EGCG: Promotion of Protein Degradation.

EGCG抑制谷氨酸脱氢酶的另一种机制:促进蛋白质降解

阅读:3
作者:Zeng Ziying, Lin Chenshui, Pan Chuqiao, Chen Zhao, Ruan Benfang Helen
Backgroud: Glutamate dehydrogenase (GDH) is involved in the metabolism of glutamate and ammonia. It is regulated by multiple ligand variants, and hyper-active GDH mutants have been reported for hyperinsulinism hyperammonemia syndrome (HHS). Methods: Here, we constructed the wild-type human GDH and three human GDH454 mutants and investigated their degradation activity and performance under different GDH inhibitors. Results: Protein activity test and SDS-PAGE analysis of the purified proteins showed that the GDH454 mutant from HHS has weaker GDH enzymatic activity but greater resistance to trypsin hydrolysis than the wild type. Interestingly, using the biomolecular interactions technique, it showed that the GDH454 mutant has 10(9) times weaker affinity for trypsin and 10-fold weaker for epigallocatechin gallate (EGCG) than the wild-type GDH. Subsequently, native-PAGE gel analysis demonstrated that EGCG could break down the GDH hexamer into monomers and form a complex with trypsin to enhance the degradation of both types of GDH. Conclusions: EGCG showed good affinity to both the wild-type and the mutant GDH proteins, promoting protein degradation; this provides a new strategy for the treatment of HHS and other hyper-active GDH-related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。