Secretory Mucin 5AC Promotes Neoplastic Progression by Augmenting KLF4-Mediated Pancreatic Cancer Cell Stemness.

分泌型粘蛋白 5AC 通过增强 KLF4 介导的胰腺癌细胞干性来促进肿瘤进展

阅读:5
作者:Ganguly Koelina, Krishn Shiv Ram, Rachagani Satyanarayana, Jahan Rahat, Shah Ashu, Nallasamy Palanisamy, Rauth Sanchita, Atri Pranita, Cox Jesse L, Pothuraju Ramesh, Smith Lynette M, Ayala Sudhua, Evans Christopher, Ponnusamy Moorthy P, Kumar Sushil, Kaur Sukhwinder, Batra Surinder K
Secreted mucin 5AC (MUC5AC) is the most abundantly overexpressed member of the mucin family during early pancreatic intraepithelial neoplasia stage I (PanIN-I) of pancreatic cancer. To comprehend the contribution of Muc5ac in pancreatic cancer pathology, we genetically ablated it in an autochthonous murine model (KrasG12D; Pdx-1cre, KC), which mirrors the early stages of pancreatic cancer development. Neoplastic onset and the PanIN lesion progression were significantly delayed in Muc5ac knockout (KrasG12D; Pdx-1 cre; Muc5ac-/-, KCM) animals with a 50% reduction in PanIN-2 and 70% reduction in PanIN-3 lesions compared with KC at 50 weeks of age. High-throughput RNA-sequencing analysis from pancreatic tissues of KCM animals revealed a significant decrease in cancer stem cell (CSC) markers Aldh1a1, Klf4, EpCAM, and CD133. Furthermore, the silencing of MUC5AC in human pancreatic cancer cells reduced their tumorigenic propensity, as indicated by a significant decline in tumor formation frequency by limiting dilution assay upon subcutaneous administration. The contribution of MUC5AC in CSC maintenance was corroborated by a significant decrease in tumor burden upon orthotopic implantation of MUC5AC-depleted pancreatic cancer cells. Mechanistically, MUC5AC potentiated oncogenic signaling through integrin αvβ5, pSrc (Y416), and pSTAT3 (Y705). Phosphorylated STAT3, in turn, upregulated Klf4 expression, thereby enriching the self-renewing CSC population. A strong positive correlation of Muc5ac with Klf4 and pSTAT3 in the PanIN lesions of KC mouse pancreas reinforces the crucial involvement of MUC5AC in bolstering the CSC-associated tumorigenic properties of Kras-induced metaplastic cells, which leads to pancreatic cancer onset and progression. SIGNIFICANCE: This study elucidates that de novo expression of MUC5AC promotes cancer cell stemness during Kras-driven pancreatic tumorigenesis and can be targeted for development of a novel therapeutic regimen.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。