Inhibition of calcineurin by FK506 protects against polyglutamine-huntingtin toxicity through an increase of huntingtin phosphorylation at S421.

FK506 对钙调磷酸酶的抑制作用通过增加 S421 位点亨廷顿蛋白的磷酸化来防止多聚谷氨酰胺亨廷顿蛋白的毒性

阅读:6
作者:Pardo Raúl, Colin Emilie, Régulier Etienne, Aebischer Patrick, Déglon Nicole, Humbert Sandrine, Saudou Frédéric
Huntington's disease (HD) is caused by an abnormal expanded polyglutamine (polyQ) repeat in the huntingtin protein. Insulin-like growth factor-1 acting through the prosurvival kinase Akt mediates the phosphorylation of huntingtin at S421 and inhibits the toxicity of polyQ-expanded huntingtin in cell culture, suggesting that compounds enhancing phosphorylation are of therapeutic interest. However, it is not clear whether phosphorylation of S421 is crucial in vivo. Using a rat model of HD based on lentiviral-mediated expression of a polyQ-huntingtin fragment in the striatum, we demonstrate here that phosphorylation of S421 is neuroprotective in vivo. We next demonstrate that calcineurin (CaN), a calcium/calmodulin-regulated Ser/Thr protein phosphatase, dephosphorylates S421 in vitro and in cells. Inhibition of calcineurin activity, either by overexpression of the dominant-interfering form of CaN or by treatment with the specific inhibitor FK506, favors the phosphorylation of S421, restores the alteration in huntingtin S421 phosphorylation in HD neuronal cells, and prevents polyQ-mediated cell death of striatal neurons. Finally, we show that administration of FK506 to mice increases huntingtin S421 phosphorylation in brain. Collectively, these data highlight the importance of CaN in the modulation of S421 phosphorylation and suggest the potential use of CaN inhibition as a therapeutic approach to treat HD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。