Kinetic and thermodynamic studies of peptidyltransferase in ribosomes from the extreme thermophile Thermus thermophilus.

对极端嗜热菌 Thermus thermophilus 核糖体中的肽基转移酶进行动力学和热力学研究

阅读:3
作者:Rodriguez-Correa Daniel, Dahlberg Albert E
Throughout evolution, emerging organisms survived by adapting existing biochemical processes to new reaction conditions. Simple protein enzymes balanced changes in structural stability with changes that permitted optimal catalysis by adjustments in both entropic and enthalpic contributions to the free energy of activation for the reaction. Study of adaptive mechanisms by large multicomponent enzymes such as the ribosome has been largely unexplored. Here we have determined the kinetic and thermodynamic parameters of peptidyltransferase in ribosomes from the extreme thermophile Thermus thermophilus. Activity of thermophilic enzymes can be assayed over a wide range of temperatures, enabling one to measure accurate catalytic rates and determine enthalpic and entropic contributions to the free energy of activation of the reaction. Differences in the reaction conditions used here and in published studies on mesophilic ribosomes prevent direct comparison, but our data on Thermus ribosomes suggest that these ribosomes have adapted to changing environments using the same strategies as simple protein enzymes, balancing stability and flexibility without loss of catalytic rate. This strategy must be a very ancient process, perhaps first used by primitive ribosomes in the RNA World.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。