New insights into functional flexibility at the peptidyl transferase center (PTC) and its vicinity were obtained by analysis of pleuromutilins binding modes to the ribosome. The crystal structures of Deinococcus radiodurans large ribosomal subunit complexed with each of three pleuromutilin derivatives: retapamulin (SB-275833), SB-280080, and SB-571519, show that all bind to the PTC with their core oriented similarly at the A-site and their C14 extensions pointing toward the P-site. Except for an H-bond network with a single nucleotide, G2061, which involves the essential keto group of all three compounds, only minor hydrophobic contacts are formed between the pleuromutilin C14 extensions and any ribosomal component, consistent with the PTC tolerance to amino acid diversity. Efficient drug binding mode is attained by a mechanism based on induced-fit motions exploiting the ribosomal intrinsic functional flexibility and resulting in conformational rearrangements that seal the pleuromutilin-binding pocket and tightens it up. Comparative studies identified a network of remote interactions around the PTC, indicating that pleuromutilins selectivity is acquired by nonconserved nucleotides residing in the PTC vicinity, in a fashion resembling allosterism. Likewise, pleuromutilin resistant mechanisms involve nucleotides residing in the environs of the binding pocket, consistent with their slow resistance-development rates.
Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity.
诱导契合增强了截短侧耳素与核糖体的结合,而远程相互作用则赋予了它们选择性
阅读:3
作者:Davidovich Chen, Bashan Anat, Auerbach-Nevo Tamar, Yaggie Rachel D, Gontarek Richard R, Yonath Ada
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2007 | 起止号: | 2007 Mar 13; 104(11):4291-6 |
| doi: | 10.1073/pnas.0700041104 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
