Organelle resolved proteomics uncovers PLA2R1 as a novel cell surface marker required for chordoma growth.

细胞器解析蛋白质组学揭示 PLA2R1 是脊索瘤生长所需的新型细胞表面标志物

阅读:3
作者:Khan Shahbaz, Zuccato Jeffrey A, Ignatchenko Vladimir, Singh Olivia, Govindarajan Meinusha, Waas Matthew, Mejia-Guerrero Salvador, Gao Andrew, Zadeh Gelareh, Kislinger Thomas
Chordomas are clinically aggressive tumors with a high rate of disease progression despite maximal therapy. Given the limited therapeutic options available, there remains an urgent need for the development of novel therapies to improve clinical outcomes. Cell surface proteins are attractive therapeutic targets yet are challenging to profile with common methods. Four chordoma cell lines were analyzed by quantitative proteomics using a differential ultracentrifugation organellar fractionation approach. A subtractive proteomics strategy was applied to select proteins that are plasma membrane enriched. Systematic data integration prioritized PLA2R1 (secretory phospholipase A2 receptor-PLA2R1) as a chordoma-enriched surface protein. The expression profile of PLA2R1 was validated across chordoma cell lines, patient surgical tissue samples, and normal tissue lysates via immunoblotting. PLA2R1 expression was further validated by immunohistochemical analysis in a richly annotated cohort of 25-patient tissues. Immunohistochemistry analysis revealed that elevated expression of PLA2R1 is correlated with poor prognosis. Using siRNA- and CRISPR/Cas9-mediated knockdown of PLA2R1, we demonstrated significant inhibition of 2D, 3D and in vivo chordoma growth. PLA2R1 depletion resulted in cell cycle defects and metabolic rewiring via the MAPK signaling pathway, suggesting that PLA2R1 plays an essential role in chordoma biology. We have characterized the proteome of four chordoma cell lines and uncovered PLA2R1 as a novel cell-surface protein required for chordoma cell survival and association with patient outcome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。