The 21st century is likely to be the first century in which large-scale short- and long-term space missions become common. Accordingly, an ever-increasing body of research is focusing on understanding the effects of current and future space expeditions on human physiology in health and disease. Yet the complex experimental environment, the small number of participants, and the high cost of space missions are among the primary factors that hinder a better understanding of the impact of space missions on human physiology. The goal of our research was to develop a cost-effective, compact, and easy-to-manipulate system to address questions related to human health and disease in space. This initiative was part of the Ramon SpaceLab program, an annual research-based learning program designed to cultivate high school students' involvement in space exploration by facilitating experiments aboard the International Space Station (ISS). In the present study, we used the nematode Caenorhabditis elegans (C. elegans), a well-suited model organism, to investigate the effect of space missions on neurodegeneration-related processes. Our study specifically focused on the level of aggregation of Huntington's disease-causing polyglutamine stretch-containing (PolyQ) proteins in C. elegans muscles, the canonical system for studying neurodegeneration in this organism. We compared animals expressing PolyQ proteins grown onboard the ISS with their genetically identical siblings grown on Earth and observed a significant difference in the number of aggregates between the two populations. Currently, it is challenging to determine whether this effect stems from developmental or morphological differences between the cultures or is a result of life in space. Nevertheless, our results serve as a proof of concept and open a new avenue for utilizing C. elegans to address various open questions in space studies, including the effects of space conditions on the onset and development of neurodegenerative diseases.
Exploiting the Unique Biology of Caenorhabditis elegans to Launch Neurodegeneration Studies in Space.
利用秀丽隐杆线虫独特的生物学特性,在太空开展神经退行性疾病研究
阅读:14
作者:Itkin Tatyana, Unger Ksenia, Barak Yair, Yovel Amit, Stekolshchik Liya, Ego Linoy, Aydinov Yana, Gerchman Yoram, Sapir Amir
| 期刊: | Astrobiology | 影响因子: | 2.600 |
| 时间: | 2024 | 起止号: | 2024 Jun;24(6):579-589 |
| doi: | 10.1089/ast.2023.0096 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
