We investigate the scattering properties of coupled parity-time (PT) symmetric chiral nanospheres with scattering matrix formalism. The exceptional points, i.e., spectral singularities at which the eigenvalues and eigenvectors simultaneously coalesce in the parameter space, of scattering matrix can be tailored by the chirality of the nanospheres. We also calculate the scattering, absorption and extinction cross sections of the PT-symmetric chiral scatter under illumination by monochromatic left- and right-circularly polarized plane waves. We find that the scattering cross section of the nanostructures exhibits an asymmetry when the plane waves are incident from the loss and gain regions, respectively, especially in the broken phase, and the optical cross section exhibits circular dichroism, i.e., differential extinction when the PT-symmetric scatter is endowed with chirality. In particular, under illumination by linearly polarized monochromatic plane waves without intrinsic chirality, the ellipticity of scattered fields in the forward direction, denoting the chirality of light, becomes larger when the scatter is in the PT-symmetry-broken phase. Our findings demonstrate that the gain and loss can control the optical chirality and enhance the chiroptical interactions and pave the way for studying the resonant chiral light-matter interactions in non-Hermitian photonics.
Scattering asymmetry and circular dichroism in coupled PT-symmetric chiral nanoparticles.
耦合PT对称手性纳米粒子的散射不对称性和圆二色性
阅读:4
作者:Chen Xiaolin, Wang Hongfei, Li Jensen, Wong Kwok-Yin, Lei Dangyuan
| 期刊: | Nanophotonics | 影响因子: | 6.600 |
| 时间: | 2022 | 起止号: | 2022 Feb 11; 11(9):2159-2167 |
| doi: | 10.1515/nanoph-2021-0705 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
