The acquisition of pluripotent callus from somatic cells plays an important role in plant development studies and crop genetic improvement. This developmental process incorporates a series of cell fate transitions and reprogramming. However, our understanding of cell heterogeneity and mechanisms of cell fate transition during callus induction remains quite limited. Here, we report a time-series single-cell transcriptome experiment on Arabidopsis root explants that were induced in callus induction medium for 0, 1, and 4Â days, and the construction of a detailed single-cell transcriptional atlas of the callus induction process. We identify the cell types responsible for initiating the early callus: lateral root primordium-initiating (LRPI)-like cells and quiescent center (QC)-like cells. LRPI-like cells are derived from xylem pole pericycle cells and are similar to lateral root primordia. We delineate the developmental trajectory of the dedifferentiation of LRPI-like cells into QC-like cells. QC-like cells are undifferentiated pluripotent acquired cells that appear in the early stages of callus formation and play a critical role in later callus development and organ regeneration. We also identify the transcription factors that regulate QC-like cells and the gene expression signatures that are related to cell fate decisions. Overall, our cell-lineage transcriptome atlas for callus induction provides a distinct perspective on cell fate transitions during callus formation, significantly improving our understanding of callus formation.
A single-cell transcriptome atlas reveals the trajectory of early cell fate transition during callus induction in Arabidopsis.
单细胞转录组图谱揭示了拟南芥愈伤组织诱导过程中早期细胞命运转变的轨迹
阅读:5
作者:Yin Ruilian, Chen Ruiying, Xia Keke, Xu Xun
| 期刊: | Plant Communications | 影响因子: | 11.600 |
| 时间: | 2024 | 起止号: | 2024 Aug 12; 5(8):100941 |
| doi: | 10.1016/j.xplc.2024.100941 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
