Receptor deorphanization in starfish reveals the evolution of relaxin signaling as a regulator of reproduction.

海星受体去孤儿化揭示了松弛素信号作为生殖调节因子的进化

阅读:5
作者:Feng Yuling, Escudero Castelán Nayeli, Hossain Mohammed Akhter, Wu Hongkang, Katayama Hidekazu, Smith Stuart J, Cummins Scott F, Mita Masatoshi, Bathgate Ross A D, Elphick Maurice R
BACKGROUND: Relaxins are a family of peptides that regulate reproductive physiology in vertebrates. Evidence that this is an evolutionarily ancient role of relaxins has been provided by the discovery of two relaxin-like gonad-stimulating peptides (RGP1 and RGP2) that trigger spawning in starfish. The main aim of this study was to identify the receptor(s) that mediate(s) the effects of RGP1 and RGP2 in starfish. RESULTS: Here we show that RGP1 and RGP2 belong to a family of peptides that include vertebrate relaxins, Drosophila insulin-like peptide 8 (Dilp8), and other relaxin-like peptides in several protostome taxa. An ortholog of the human relaxin receptors RXFP1 and RXFP2 and the Drosophila receptor LGR3 was identified in starfish (RXFP/LGR3). In Drosophila, but not in humans and other vertebrates, there is a paralog of LGR3 known as LGR4, and here an LGR4-type receptor was also identified in starfish. In vitro pharmacological experiments revealed that both RGP1 and RGP2 act as ligands for RXFP/LGR3 in the starfish Acanthaster cf. solaris and Asterias rubens, but neither peptide acts as a ligand for LGR4 in these species. CONCLUSIONS: Discovery of the RXFP/LGR3-type receptor for RGP1 and RGP2 in starfish provides a new insight into the evolution of relaxin-type signaling as a regulator of reproductive processes. Furthermore, our findings indicate that RXFP/LGR3-type receptors have been lost in several phyla, including urochordates, mollusks, bryozoans, platyhelminthes, and nematodes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。