While critical to biological processes, molecular diffusion is difficult to quantify, and spatial mapping of local diffusivity is even more challenging. Here we report a machine-learning-enabled approach, pixels-to-diffusivity (Pix2D), to directly extract the diffusion coefficient D from single-molecule images, and consequently enable super-resolved D spatial mapping. Working with single-molecule images recorded at a fixed framerate under typical single-molecule localization microscopy (SMLM) conditions, Pix2D exploits the often undesired yet evident motion blur, i.e., the convolution of single-molecule motion trajectory during the frame recording time with the diffraction-limited point spread function (PSF) of the microscope. Whereas the stochastic nature of diffusion imprints diverse diffusion trajectories to different molecules diffusing at the same given D, we construct a convolutional neural network (CNN) model that takes a stack of single-molecule images as the input and evaluates a D-value as the output. We thus validate robust D evaluation and spatial mapping with simulated data, and with experimental data successfully characterize D differences for supported lipid bilayers of different compositions and resolve gel and fluidic phases at the nanoscale.
Machine-learning-powered extraction of molecular diffusivity from single-molecule images for super-resolution mapping.
利用机器学习从单分子图像中提取分子扩散系数,实现超分辨率成像
阅读:4
作者:Park Ha H, Wang Bowen, Moon Suhong, Jepson Tyler, Xu Ke
| 期刊: | Communications Biology | 影响因子: | 5.100 |
| 时间: | 2023 | 起止号: | 2023 Mar 28; 6(1):336 |
| doi: | 10.1038/s42003-023-04729-x | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
