Fluorescent activated cell sorting (FACS) combined with gene expression microarrays for transcription enrichment profiling of zebrafish lateral line cells.

荧光激活细胞分选(FACS)结合基因表达微阵列对斑马鱼侧线细胞进行转录富集分析

阅读:4
作者:Gallardo Viviana E, Behra Martine
Transgenic lines carrying fluorescent reporter genes like GFP have been of great value in the elucidation of developmental features and physiological processes in various animal models, including zebrafish. The lateral line (LL), which is a fish specific superficial sensory organ, is an emerging organ model for studying complex cellular processes in the context of the whole living animal. Cell migration, mechanosensory cell development/differentiation and regeneration are some examples. This sensory system is made of superficial and sparse small sensory patches called neuromasts, with less than 50 cells in any given patch. The paucity of cells is a real problem in any effort to characterize those cells at the transcriptional level. We describe here a method which we applied to efficiently separate subpopulation of cells of the LL, using two distinct stable transgenic zebrafish lines, Tg(cldnb:gfp) and Tg(tnks1bp1:EGFP). In both cases, the GFP positive (GFP+) cells were separated from the remainder of the animal by using a Fluorescent Activated Cell Sorter (FACS). The transcripts of the GFP+ cells were subsequently analyzed on gene expression microarrays. The combination of FACS and microarrays is an efficient method to establish a transcriptional signature for discrete cell populations which would otherwise be masked in whole animal preparation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。