Studying breast cancer lung metastasis using a multi-compartment microfluidic device with a mimetic tumor-stroma interaction model.

利用具有模拟肿瘤-基质相互作用模型的多室微流控装置研究乳腺癌肺转移

阅读:4
作者:Zarin Bahareh, Rafiee Laleh, Abdollahi Sorosh, Vatani Maryam, Hassani Mohsen, Sanati-Nezhad Amir, Javanmard Shaghayegh Haghjooy
BACKGROUND: Understanding the mechanisms underlying the metastasis of breast cancer cells to the lungs is challenging, and appropriate simulation of the tumor microenvironment with mimetic cancer-stroma crosstalk is essential. β4 integrin is known to contribute to triggering a variety of different signaling cues involved in the malignant phenotype of cancer but its role in organ-specific metastasis needs further study. In this work, a multi-compartment microfluidic tumor model was developed to evaluate cancer cell invasion. MATERIALS AND METHODS: To model the primary tumor microenvironment, breast cancer cells (MCF7) and cancer-associated fibroblasts (CAFs) were co-cultured within the tumor compartment of the microfluidic chip while normal lung fibroblasts (NLFs) were seeded in a different compartment, as the secondary tumor site, separated from the tumor compartment via a Matrigel™ layer resembling the extracellular matrix. RESULTS: The cytotoxic effect of β4 integrin blockade on cancer cells gradually increased after 48 and 72 h of co-culture. Invasion of breast cancer cells in both single and coculture models was characterized in response to β4 integrin blockade. The invasion rate and gap closure of MCF7/CAF_NLF was significantly higher than MCF7_NLF (P < 0.0001). β4 integrin inhibition reduced the rate of gap closure and invasion of both (P < 0.0001). CONCLUSIONS: Biomimetic microfluidic-based tumor models hold promise for studying cancer metastasis mechanisms. Precise manipulation, simulation, and analysis of the cancer microenvironment are made possible by microfluidics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。