This paper presents a Bayesian analysis of linear mixed models for quantile regression based on a Cholesky decomposition for the covariance matrix of random effects. We develop a Bayesian shrinkage approach to quantile mixed regression models using a Bayesian adaptive lasso and an extended Bayesian adaptive group lasso. We also consider variable selection procedures for both fixed and random effects in a linear quantile mixed model via the Bayesian adaptive lasso and extended Bayesian adaptive group lasso with spike and slab priors. To improve mixing of the Markov chains, a simple and efficient partially collapsed Gibbs sampling algorithm is developed for posterior inference. Simulation experiments and an application to the Age-Related Macular Degeneration Trial data to demonstrate the proposed methods.
Bayesian variable selection in linear quantile mixed models for longitudinal data with application to macular degeneration.
贝叶斯变量选择在纵向数据的线性分位数混合模型中应用到黄斑变性
阅读:7
作者:Ji Yonggang, Shi Haifang
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2020 | 起止号: | 2020 Oct 26; 15(10):e0241197 |
| doi: | 10.1371/journal.pone.0241197 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
