One of the methods to improve the structural design of concrete is by updating the factors given in standard codes, especially when non-conventional materials are used in concrete beams. Accordingly, this study focuses on the colorations between the compressive strength and shear strength of high-strength concrete beams with and without steel fibers. For that purpose, different models are proposed to predict shear strength of high-strength concrete beams, by taking different combinations of the main variables: beam cross-section dimension (width and effective depth), reinforcement index, concrete compressive strength, shear span ratio, and steel fiber properties (volumetric content, fiber aspect ratio, and type of steel fibers). Multi-linear and non-linear regression analyses are used with large database experimental results found in the literature. The predicted results from the proposed equations are composed with different available models from codes, standards, and literatures. The calculated results showed better correlations and were close enough to the experimental data. Based on the data given in the standard codes, the shear strength is proportional to compressive strength ([Formula: see text]) of the power 0.5. However, this value may not be adequate for modern cement and concrete containing steel fibers. Therefore, the mentioned power value must be reduced 5 times to 0.1.
Prediction and developing of shear strength of reinforced high strength concrete beams with and without steel fibers using multiple mathematical models.
利用多种数学模型预测和开发含钢纤维和不含钢纤维的钢筋高强混凝土梁的抗剪强度
阅读:4
作者:Saber, Ayad, Zaki
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2022 | 起止号: | 2022 Mar 31; 17(3):e0265677 |
| doi: | 10.1371/journal.pone.0265677 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
