Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment.

利用机器学习引导的信号增强技术,实现基于等离子体的超灵敏肿瘤负荷监测

阅读:4
作者:Widman Adam J, Shah Minita, Frydendahl Amanda, Halmos Daniel, Khamnei Cole C, Øgaard Nadia, Rajagopalan Srinivas, Arora Anushri, Deshpande Aditya, Hooper William F, Quentin Jean, Bass Jake, Zhang Mingxuan, Langanay Theophile, Andersen Laura, Steinsnyder Zoe, Liao Will, Rasmussen Mads Heilskov, Henriksen Tenna Vesterman, Jensen Sarah Østrup, Nors Jesper, Therkildsen Christina, Sotelo Jesus, Brand Ryan, Schiffman Joshua S, Shah Ronak H, Cheng Alexandre Pellan, Maher Colleen, Spain Lavinia, Krause Kate, Frederick Dennie T, den Brok Wendie, Lohrisch Caroline, Shenkier Tamara, Simmons Christine, Villa Diego, Mungall Andrew J, Moore Richard, Zaikova Elena, Cerda Viviana, Kong Esther, Lai Daniel, Malbari Murtaza S, Marton Melissa, Manaa Dina, Winterkorn Lara, Gelmon Karen, Callahan Margaret K, Boland Genevieve, Potenski Catherine, Wolchok Jedd D, Saxena Ashish, Turajlic Samra, Imielinski Marcin, Berger Michael F, Aparicio Sam, Altorki Nasser K, Postow Michael A, Robine Nicolas, Andersen Claus Lindbjerg, Landau Dan A
In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGE(SNV) uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGE(CNV) also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGE(SNV) enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。