In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGE(SNV) uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300Ã compared to previous WGS error suppression. MRD-EDGE(CNV) also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1âGb to 200âMb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGE(SNV) enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.
Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment.
利用机器学习引导的信号增强技术,实现基于等离子体的超灵敏肿瘤负荷监测
阅读:9
作者:Widman Adam J, Shah Minita, Frydendahl Amanda, Halmos Daniel, Khamnei Cole C, Ãgaard Nadia, Rajagopalan Srinivas, Arora Anushri, Deshpande Aditya, Hooper William F, Quentin Jean, Bass Jake, Zhang Mingxuan, Langanay Theophile, Andersen Laura, Steinsnyder Zoe, Liao Will, Rasmussen Mads Heilskov, Henriksen Tenna Vesterman, Jensen Sarah Ãstrup, Nors Jesper, Therkildsen Christina, Sotelo Jesus, Brand Ryan, Schiffman Joshua S, Shah Ronak H, Cheng Alexandre Pellan, Maher Colleen, Spain Lavinia, Krause Kate, Frederick Dennie T, den Brok Wendie, Lohrisch Caroline, Shenkier Tamara, Simmons Christine, Villa Diego, Mungall Andrew J, Moore Richard, Zaikova Elena, Cerda Viviana, Kong Esther, Lai Daniel, Malbari Murtaza S, Marton Melissa, Manaa Dina, Winterkorn Lara, Gelmon Karen, Callahan Margaret K, Boland Genevieve, Potenski Catherine, Wolchok Jedd D, Saxena Ashish, Turajlic Samra, Imielinski Marcin, Berger Michael F, Aparicio Sam, Altorki Nasser K, Postow Michael A, Robine Nicolas, Andersen Claus Lindbjerg, Landau Dan A
| 期刊: | Nature Medicine | 影响因子: | 50.000 |
| 时间: | 2024 | 起止号: | 2024 Jun;30(6):1655-1666 |
| doi: | 10.1038/s41591-024-03040-4 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
