Many medical applications are interested to know the disease status. The disease status can be related to multiple serial measurements. Nevertheless, owing to various reasons, the binary outcome can be measured incorrectly. The estimators derived from the misspecified outcome can be biased. This paper derives the complete data likelihood function to incorporate both the multiple serial measurements and the misspecified outcome. Owing to the latent variables, EM algorithm is used to derive the maximum-likelihood estimators. Monte Carlo simulations are conducted to compare the impact of misspecification on the estimates. A retrospective data for the recurrence of atrial fibrillation is used to illustrate the usage of the proposed model.
Misspecification of a binary dependent variable in the logistic model controlling for the repeated longitudinal measures.
在控制重复纵向测量的逻辑模型中,二元因变量的设定存在错误
阅读:4
作者:Wang Chun-Chao, Hwang Yi-Ting, Chou Chung-Chuan, Lee Hui-Ling
| 期刊: | J Appl Stat | 影响因子: | 0.000 |
| 时间: | 2023 | 起止号: | 2021 Oct 4; 50(1):155-169 |
| doi: | 10.1080/02664763.2021.1982877 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
