The Strength and Delamination of Graphene/Cu Composites with Different Cu Thicknesses.

不同铜厚度下石墨烯/铜复合材料的强度和分层性能

阅读:4
作者:Kim Song-Mi, Park Woo-Rim, Kwon Oh-Heon
This study analyzed the mechanical and fracture behavior of graphene/copper (Cu) composites with different Cu thicknesses by using molecular dynamics (MD) and representative volume element (RVE) analysis. Three graphene/Cu composite analytical models were classified as 4.8, 9.8, and 14.3 nm according to Cu thicknesses. Using MD analysis, zigzag-, armchair-, and z (thickness)-direction tensile analyses were performed for each model to analyze the effect of Cu thickness variation on graphene/Cu composite strength and delamination fracture. In the RVE analysis, the mechanical characteristics of the interface between graphene and Cu were evaluated by setting the volume fraction to 1.39, 2.04, and 4.16% of the graphene/Cu composite model, classified according to the Cu thickness. From their obtained results, whether the graphene bond is maintained has the greatest effect on the strength of graphene/Cu composites, regardless of the Cu thickness. Additionally, graphene/Cu composites are more vulnerable to armchair direction tensile forces with fracture strengths of 14.7, 8.9, and 8.2 GPa depending on the Cu thickness. The results of this study will contribute to the development of guidelines and performance evaluation standards for graphene/Cu composites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。