BACKGROUND: Mechanistic models of within-cell signal transduction networks can explain how these networks integrate internal and external inputs to give rise to the appropriate cellular response. These models can be fruitfully used in cancer cells, whose aberrant decision-making regarding their survival or death, proliferation or quiescence can be connected to errors in the state of nodes or edges of the signal transduction network. RESULTS: Here we present a comprehensive network, and discrete dynamic model, of signal transduction in ER+ breast cancer based on the literature of ER+, HER2+, and PIK3CA-mutant breast cancers. The network model recapitulates known resistance mechanisms to PI3K inhibitors and suggests other possibilities for resistance. The model also reveals known and novel combinatorial interventions that are more effective than PI3K inhibition alone. CONCLUSIONS: The use of a logic-based, discrete dynamic model enables the identification of results that are mainly due to the organization of the signaling network, and those that also depend on the kinetics of individual events. Network-based models such as this will play an increasing role in the rational design of high-order therapeutic combinations.
A network modeling approach to elucidate drug resistance mechanisms and predict combinatorial drug treatments in breast cancer.
利用网络建模方法阐明乳腺癌的耐药机制并预测联合用药治疗方案
阅读:6
作者:Gómez Tejeda Zañudo Jorge, Scaltriti Maurizio, Albert Réka
| 期刊: | Cancer Converg | 影响因子: | 0.000 |
| 时间: | 2017 | 起止号: | 2017;1(1):5 |
| doi: | 10.1186/s41236-017-0007-6 | 研究方向: | 肿瘤 |
| 疾病类型: | 乳腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
