The formation of ice particles in the atmosphere strongly affects cloud properties and the climate. While mineral dust is known to be an effective ice nucleating particle, the role of aerosols from anthropogenic pollution in ice nucleation is still under debate. Here we probe the ice nucleation ability of different aerosol types by combining 11-year observations from multiple satellites and cloud-resolving model simulations. We find that, for strong convective systems, ice particle effective radius near cloud top decreases with increasing loading of polluted continental aerosols, because the ice formation is dominated by homogeneous freezing of cloud droplets that are smaller under more polluted conditions. In contrast, an increase in ice particle effective radius with polluted continental aerosols is found for moderate convection. Our model simulations suggest that this positive correlation is explained by enhanced heterogeneous ice nucleation and prolonged ice particle growth at larger aerosol loading, indicating that polluted continental aerosols contain a significant fraction of ice nucleating particles. Similar aerosol-ice relationships are observed for dust aerosols, further corroborating the ice nucleation ability of polluted continental aerosols. By catalyzing ice formation, aerosols from anthropogenic pollution could have profound impacts on cloud lifetime and radiative effect as well as precipitation efficiency.
Ice nucleation by aerosols from anthropogenic pollution.
人为污染气溶胶的冰核形成作用
阅读:5
作者:Zhao Bin, Wang Yuan, Gu Yu, Liou Kuo-Nan, Jiang Jonathan H, Fan Jiwen, Liu Xiaohong, Huang Lei, Yung Yuk L
| 期刊: | Nature Geoscience | 影响因子: | 16.100 |
| 时间: | 2019 | 起止号: | 2019 Aug;12:602-607 |
| doi: | 10.1038/s41561-019-0389-4 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
