Parity and time reversal elucidate both decision-making in empirical models and attractor scaling in critical Boolean networks.

奇偶性和时间逆转既能阐明经验模型中的决策,也能阐明关键布尔网络中的吸引子缩放

阅读:5
作者:Rozum Jordan C, Gómez Tejeda Zañudo Jorge, Gan Xiao, Deritei Dávid, Albert Réka
We present new applications of parity inversion and time reversal to the emergence of complex behavior from simple dynamical rules in stochastic discrete models. Our parity-based encoding of causal relationships and time-reversal construction efficiently reveal discrete analogs of stable and unstable manifolds. We demonstrate their predictive power by studying decision-making in systems biology and statistical physics models. These applications underpin a novel attractor identification algorithm implemented for Boolean networks under stochastic dynamics. Its speed enables resolving a long-standing open question of how attractor count in critical random Boolean networks scales with network size and whether the scaling matches biological observations. Via 80-fold improvement in probed network size (N = 16,384), we find the unexpectedly low scaling exponent of 0.12 ± 0.05, approximately one-tenth the analytical upper bound. We demonstrate a general principle: A system's relationship to its time reversal and state-space inversion constrains its repertoire of emergent behaviors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。