Bituminous carbonate rocks of the Upper Cretaceous Shu'ayb Formation from the Ajloun outcrop in Northern Jordan were geochemically and petrologically analyzed in this study. This study integrates kerogen microscopy results with geochemical results (i.e., biomarker, stable carbon isotope, and major elemental compositions) to understand the organic matter (OM) inputs and to reveal the dispositional setting and its effect on the occurrence of OM. The Shu'ayb bituminous carbonate rocks have high total organic carbon (TOC) and sulfur (S) contents, with average values of 12.3 and 4.59 wt %, respectively, indicating redox conditions during their precipitation. The high abundance of alginite (i.e., lamalginite) in the Shu'ayb bituminous carbonate sediments is a further evidence for redox conditions. The finding of mainly marine-derived OM was also demonstrated by the biomarker distribution and carbon isotope composition. The biomarkers are represented by a narrow Pr/Ph ratio of up to 0.97, abundance of tricyclic terpanes, and high C(27) regular sterane, indicating that the OM was primarily derived from phytoplankton algae, along with small amounts of land plant-derived materials, and were accumulated under reducing conditions. The studied Shu'ayb bituminous carbonate facies is composed of mainly calcium (CaO; average, 45.10 wt %), with significant amounts of silicon (Si(2)O(3); avg., 9.35 wt %), aluminum (Al(2)O(3); avg., 6.91 wt %), and phosphorus (P(2)O(3); avg., 1.47 wt %) and low amounts of iron (Fe(2)O(3)) and titanium (TiO(2)) of less than 1 wt %, indicating that the detrital influx was low in an open water depth system with higher primary bioproductivity. The geochemical proxy suggests that the Shu'ayb bituminous carbonate facies was established in a saline water environment, with Ca/Ca + Fe and S/TOC values of more than 0.9 and 0.50, respectively, which could be attributed to the increase in reducing conditions of the water column. The chemical index of alteration values of more than 0.8 also indicate that the Shu'ayb bituminous carbonate facies formed during warm and humid climatic conditions, thereby resulting in intense subaerial weathering.
Geochemical and Organic Petrological Characteristics of the Bituminous Carbonate Succession (Upper Cretaceous Shu'ayb Formation) in Northern Jordan: Implications for Organic Matter Input and Paleosalinity, Paleoredox, and Paleoclimatic Conditions.
约旦北部上白垩统舒艾布组沥青碳酸盐岩地层的地球化学和有机岩石学特征:对有机质输入和古盐度、古氧化还原和古气候条件的影响
阅读:2
作者:Hakimi Mohammed Hail, Alqudah Mohammad, Momani Malik M, Zahir Danish, El Aal Ahmed Abd, El Nady Mohamed M, Rahim Afikah, Hatem Baleid Ali
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2024 | 起止号: | 2024 Jun 12; 9(25):27458-27479 |
| doi: | 10.1021/acsomega.4c02582 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
