In situ measurement of the stiffness increase in the posterior sclera after UV-riboflavin crosslinking by optical coherence elastography.

利用光学相干弹性成像技术对紫外线核黄素交联后巩膜后部刚度增加进行原位测量

阅读:3
作者:Vinas-Pena Maria, Feng Xu, Li Guo-Yang, Yun Seok-Hyun
Scleral crosslinking may provide a way to prevent or treat myopia by stiffening scleral tissues. The ability to measure the stiffness of scleral tissues in situ pre and post scleral crosslinking would be useful but has not been established. Here, we tested the feasibility of optical coherence elastography (OCE) to measure shear modulus of scleral tissues and evaluate the impact of crosslinking on different posterior scleral regions using ex vivo porcine eyes as a model. From measured elastic wave speeds at 6 - 16 kHz, we obtained out-of-plane shear modulus value of 0.71 ± 0.12 MPa (n = 20) for normal porcine scleral tissues. After riboflavin-assisted UV crosslinking, the shear modulus increased to 1.50 ± 0.39 MPa (n = 20). This 2-fold change was consistent with the increase of static Young's modulus from 5.5 ± 1.1 MPa to 9.3 ± 1.9 MPa after crosslinking, which we measured using conventional uniaxial extensometry on tissue stripes. OCE revealed regional stiffness differences across the temporal, nasal, and deeper posterior sclera. Our results show the potential of OCE as a noninvasive tool to evaluate the effect of scleral crosslinking.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。