Power-law adaptation in the presynaptic vesicle cycle.

突触前囊泡循环中的幂律适应

阅读:6
作者:Mikulasch Fabian A, Georgiev Svilen V, Rudelt Lucas, Rizzoli Silvio O, Priesemann Viola
After synaptic transmission, fused synaptic vesicles are recycled, enabling the synapse to recover its capacity for renewed release. The recovery steps, which range from endocytosis to vesicle docking and priming, have been studied individually, but it is not clear what their impact on the overall dynamics of synaptic recycling is, and how they influence signal transmission. Here we model the dynamics of vesicle recycling and find that the multiple timescales of the recycling steps are reflected in synaptic recovery. This leads to multi-timescale synapse dynamics, which can be described by a simplified synaptic model with 'power-law' adaptation. Using cultured hippocampal neurons, we test this model experimentally, and show that the duration of synaptic exhaustion changes the effective synaptic recovery timescale, as predicted by the model. Finally, we show that this adaptation could implement a specific function in the hippocampus, namely enabling efficient communication between neurons through the temporal whitening of hippocampal spike trains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。