The accessory beta subunit (Ca(v)β) of calcium channels first appear in the same genome as Ca(v)1 L-type calcium channels in single-celled coanoflagellates. The complexity of this relationship expanded in vertebrates to include four different possible Ca(v)β subunits (β1, β2, β3, β4) which associate with four Ca(v)1 channel isoforms (Ca(v)1.1 to Ca(v)1.4) and three Ca(v)2 channel isoforms (Ca(v)2.1 to Ca(v)2.3). Here we assess the fundamentally-shared features of the Ca(v)β subunit in an invertebrate model (pond snail Lymnaea stagnalis) that bears only three homologous genes: (LCa(v)1, LCa(v)2, and LCa(v)β). Invertebrate Ca(v)β subunits (in flatworms, snails, squid and honeybees) slow the inactivation kinetics of Ca(v)2 channels, and they do so with variable N-termini and lacking the canonical palmitoylation residues of the vertebrate β2a subunit. Alternative splicing of exon 7 of the HOOK domain is a primary determinant of a slow inactivation kinetics imparted by the invertebrate LCa(v)β subunit. LCa(v)β will also slow the inactivation kinetics of LCa(v)3 T-type channels, but this is likely not physiologically relevant in vivo. Variable N-termini have little influence on the voltage-dependent inactivation kinetics of differing invertebrate Ca(v)β subunits, but the expression pattern of N-terminal splice isoforms appears to be highly tissue specific. Molluscan LCa(v)β subunits have an N-terminal "A" isoform (coded by exons: 1a and 1b) that structurally resembles the muscle specific variant of vertebrate β1a subunit, and has a broad mRNA expression profile in brain, heart, muscle and glands. A more variable "B" N-terminus (exon 2) in the exon position of mammalian β3 and has a more brain-centric mRNA expression pattern. Lastly, we suggest that the facilitation of closed-state inactivation (e.g. observed in Ca(v)2.2 and Ca(v)β3 subunit combinations) is a specialization in vertebrates, because neither snail subunit (LCa(v)2 nor LCa(v)β) appears to be compatible with this observed property.
Gene splicing of an invertebrate beta subunit (LCavβ) in the N-terminal and HOOK domains and its regulation of LCav1 and LCav2 calcium channels.
无脊椎动物β亚基(LCavβ)在N端和HOOK结构域的基因剪接及其对LCav1和LCav2钙通道的调控
阅读:3
作者:Dawson Taylor F, Boone Adrienne N, Senatore Adriano, Piticaru Joshua, Thiyagalingam Shano, Jackson Daniel, Davison Angus, Spafford J David
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2014 | 起止号: | 2014 Apr 1; 9(4):e92941 |
| doi: | 10.1371/journal.pone.0092941 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
