Conclusions
In this study, we found that spatial heterogeneity of tissue structure and tissue shrinkage occurred in rotating flow culture, which was not observed in static suspension culture. Moreover, from the quantitative analysis, it was also suggested that tissue shrinkage in rotating flow culture contributed its following tissue maturation. These findings showed one of the important characteristics of rotating flow culture which was not revealed in previous studies.
Methods
The cardiac tissue, which consisted of cardiomyocytes derived from hiPSCs, was cultured on the 3D scaffold of poly (lactic-co-glycolic) acid (PLGA)-aligned nanofibers, in rotating flow culture for 5 days. During the culture, the time profile of projected area of tissue and formation of maturation marker proteins (β-myosin heavy chain and Connexin-43), tissue structure, and formation of nuclear lamina proteins (Lamin A/C) were compared with that in static suspension culture.
Results
The ratio of the projected area of tissue significantly decreased from Day 0 to Day 3 due to tissue shrinkage. In contrast, Western blot analysis revealed that maturation protein markers of cardiomyocytes significantly increased after Day 3. In addition, in rotating flow culture, flat-shaped nuclei and fiber-like cytoskeletal structures were distributed in the surface region of tissue where medium flow was continuously applied. Moreover, Lamin A/C, which are generally formed in differentiated cells owing to mechanical force across the cytoskeleton and critically affect the maturation of cardiomyocytes, were significantly formed in the tissue of rotating flow culture. Conclusions: In this study, we found that spatial heterogeneity of tissue structure and tissue shrinkage occurred in rotating flow culture, which was not observed in static suspension culture. Moreover, from the quantitative analysis, it was also suggested that tissue shrinkage in rotating flow culture contributed its following tissue maturation. These findings showed one of the important characteristics of rotating flow culture which was not revealed in previous studies.
