Piezoelectricity of hexagonal boron nitrides improves bone tissue generation as tested on osteoblasts.

六方氮化硼的压电性可改善骨组织生成,这已通过对成骨细胞的测试得到证实

阅读:16
作者:Adiguzel Sevin, Cicek Nilay, Cobandede Zehra, Misirlioglu Feray B, Yilmaz Hulya, Culha Mustafa
Bone tissue, also known as bone, is a hard and specialized connective tissue consisting of various bone cells. Internally, it has a honeycomb-like matrix providing rigidity to the bone and a piezoelectric feature contributing to bone remodeling. Bone remodeling is a crucial process involving osteoblastic replacement and resorption by osteoclastic cells to maintain structural integrity and mechanical properties of the bone tissue as it grows. However, in cases of fracture or degeneration, the natural self-regeneration process or inherent piezoelectricity of the body may not be sufficient to repair the damage. To address this, the use of piezoelectric nanomaterials (NMs) in bone tissue engineering was investigated. In this study, the influence of the piezoelectric hexagonal boron nitrides (hBNs) and barium titanate (BaTiO(3)) on human osteoblasts (HOb) was comparatively evaluated. The synthesized hBNs and purchased BaTiO(3) were used after their full characterization by imaging and spectroscopic techniques. The piezoelectric behavior of both NMs was evaluated using piezoresponse force microscopy (PRFM). During in vitro studies, the piezoelectricity of the NMs was stimulated with ultrasound (US) exposure. The results showed that the NMs are not cytotoxic at the concentrations tested and the migration ability and calcium deposit formation of the cells treated with the NMs and upon US exposure were significantly increased. These results demonstrate that the hBNs have the potential to accelerate bone tissue regeneration and promote bone healing. These findings offer a promising avenue for developing new therapies for bone-related injuries and conditions requiring significant bone remodeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。