Combined Effects of Microgravity and Chronic Low-Dose Gamma Radiation on Brassica rapa Microgreens.

微重力和慢性低剂量伽马射线对甘蓝型油菜微型蔬菜的综合影响

阅读:14
作者:De Francesco Sara, Le Disquet Isabel, Pereda-Loth Veronica, Tisseyre Lenka, De Pascale Stefania, Amitrano Chiara, Carnero Diaz Eugénie, De Micco Veronica
Plants in space face unique challenges, including chronic ionizing radiation and reduced gravity, which affect their growth and functionality. Understanding these impacts is essential to determine the cultivation conditions and protective shielding needs in future space greenhouses. While certain doses of ionizing radiation may enhance crop yield and quality, providing "functional food" rich in bioactive compounds, to support astronaut health, the combined effects of radiation and reduced gravity are still unclear, with potential additive, synergistic, or antagonistic interactions. This paper investigates the combined effect of chronic ionizing radiation and reduced gravity on Brassica rapa seed germination and microgreens growth. Four cultivation scenarios were designed: standard Earth conditions, chronic irradiation alone, simulated reduced gravity alone, and a combination of irradiation and reduced gravity. An analysis of the harvested microgreens revealed that growth was moderately reduced under chronic irradiation combined with altered gravity, likely due to oxidative stress, primarily concentrated in the roots. Indeed, an accumulation of reactive oxygen species (ROS) was observed, as well as of polyphenols, likely to counteract oxidative damage and preserve the integrity of essential structures, such as the root stele. These findings represent an important step toward understanding plant acclimation in space to achieve sustainable food production on orbital and planetary platforms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。