Understanding cellular diversity and disease mechanisms requires a global analysis of proteins and their modifications. While next-generation sequencing has advanced our understanding of cellular heterogeneity, it fails to capture downstream signalling networks. Ultrasensitive mass spectrometry-based proteomics enables unbiased protein-level analysis of low cell numbers, down to single cells. However, phosphoproteomics remains limited to high-input samples due to sample losses and poor reaction efficiencies associated with processing low cell numbers. Isobaric stable isotope labelling is a promising approach for reproducible and accurate quantification of low abundant phosphopeptides. Here, we introduce SPARCE (Streamlined Phosphoproteomic Analysis of Rare CElls) for multiplexed phosphoproteomic analysis of low cell numbers. SPARCE integrates cell isolation, water-based lysis, on-tip TMT labelling, and phosphopeptide enrichment. SPARCE outperforms traditional methods by enhancing labelling efficiency and phosphoproteome coverage. To demonstrate the utility of SPARCE, we analysed four patient-derived glioblastoma stem cell lines, reliably quantifying phosphosite changes from 1000 FACS-sorted cells. This workflow expands the possibilities for signalling analysis of rare cell populations.
Multiplexed phosphoproteomics of low cell numbers using SPARCE.
利用 SPARCE 对少量细胞进行多重磷酸化蛋白质组学分析
阅读:4
作者:Gaizley Emily J, Chen Xiuyuan, Bhamra Amandeep, Enver Tariq, Surinova Silvia
| 期刊: | Communications Biology | 影响因子: | 5.100 |
| 时间: | 2025 | 起止号: | 2025 Apr 26; 8(1):666 |
| doi: | 10.1038/s42003-025-08068-x | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
