Background: Lung cancer is the leading cause of cancer-related death in the male sex worldwide. Non-small cell lung cancer (NSCLC) is the most prevalent type, accounting for 80-85% of cases, and lung adenocarcinoma is the most common and lethal NSCLC subtype, being responsible for ca. 50% of deaths. Despite new therapeutic strategies, lung cancer mortality rates remain high, highlighting the need for the development of new drugs. Objectives: We investigated the pharmacological potential of a series of curcumin-like compounds using two lung adenocarcinoma cell lines as models. Methods and Results: Cell viability assay led to the identification of PQM-214 as the hit compound, and other methodologies were employed to investigate the mechanisms underlying its antitumor potential, including cell cycle analysis, mitotic index determination, assessment of clonogenic capacity, senescence-associated β-galactosidase and annexin V assays, quantitative PCR, and Western blot analyses. The mechanism of action of PQM-214 was investigated in A549 cells, revealing that it effectively inhibits cell proliferation by inducing cell cycle arrest, apoptosis, or senescence. Cell cycle key regulators were significantly modulated by PQM-214, with cyclin E2, MYC, and FOXM1 being downregulated, while senescence markers such as cyclin D1, CDKN1A (p21), IL-8, TIMP1, and TIMP2 were upregulated. Moreover, Western blot results revealed upregulation of cyclin D1 and p21 in PQM-214-treated samples, with a downregulation of cyclin B. Conclusions: PQM-214 seems to act on different molecular targets in lung adenocarcinoma cells, inhibiting cell proliferation and inducing apoptosis. Further studies will be conducted to explore whether PQM-214 can also act as a senolytic agent, which would reinforce its anticancer potential.
Curcumin-like Compound Inhibits Proliferation of Adenocarcinoma Cells by Inducing Cell Cycle Arrest and Senescence.
姜黄素样化合物通过诱导细胞周期停滞和衰老来抑制腺癌细胞的增殖
阅读:4
作者:Fonseca Rafael, Louzano Yasmin Dos Santos, Ortiz Cindy Juliet Cristancho, Silva Matheus de Freitas, Felix Maria Luiza Vieira, Ferreira-Silva Guilherme Ãlvaro, Caixeta Ester Siqueira, Zavan Bruno, Viegas Claudio Jr, Ionta Marisa
| 期刊: | Pharmaceuticals | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Jun 18; 18(6):914 |
| doi: | 10.3390/ph18060914 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
