Genetically induced loss of the gap-junction protein Connexin 43 (Cx43) in murine Sertoli cells leads to an arrest of spermatogenesis at the level of spermatogonia, highly vacuolated tubules, and intratubular cell clusters. Transmission electron microscopy as well as 3D-reconstruction of Sertoli cells based on serial block-face scanning electron microscopy imaging revealed severe cell shape changes in Cx43 deficient Sertoli cells. Since the cytoskeleton is important for the transport of germ cells within the seminiferous epithelium and for keeping the cell shape, the study at hand aimed to reveal correlations of Cx43 loss and changes of cytoskeletal components and their spatial organization in the seminiferous epithelium. Immunohistochemistry, immunofluorescence, conventional transmission electron microcopy and immunogold labeling indicated alterations in microtubule and actin filament distribution patterns in Cx43 deficient Sertoli cells compared to wildtype mice. Firstly, microtubules seemed to be misoriented in mutant Sertoli cells. Secondly, the actin filament based basal ectoplasmic specializations were increased in spatial extension, but the apical ectoplasmic specialization was missing. Lastly, Sertoli cells of both genotypes immunostained positive for vimentin, the prevalent intermediate filament of Sertoli cells, but not for keratins, markers for Sertoli cell immaturity or dedifferentiation. In conclusion, Cx43 deficiency in Sertoli cells correlates not only with severe cell shape alterations but also with changes in microtubule and actin filament distribution patterns, while intermediate filament expression seems to be only negligibly influenced.
The impact of Connexin 43 deficiency on the cell shape and cytoskeleton of murine Sertoli cells: A house with ramshackle walls?
连接蛋白 43 缺乏对小鼠塞托利细胞的细胞形状和细胞骨架的影响:就像一座摇摇欲坠的房子?
阅读:4
作者:Ueffing Mareike, Langeheine Marion, Gniesmer Sarah, Rode Kristina, Staggenborg Sarah, Wirth Gudrun, Rohn Kerstin, Koch Rüdiger, Blume Ines, Pfarrer Christiane, Wrede Christoph, Brehm Ralph
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Apr 24; 20(4):e0321292 |
| doi: | 10.1371/journal.pone.0321292 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
