AIM: Experimental models are a powerful aid in visualizing molecular phenomena. This work reports how the worm Caenorhabditis elegans (C. elegans) can be effectively explored for students to learn how molecular cues dramatically condition axonal guidance and define nervous system structure and behavior at the organism level. Summary of work: A loosely oriented observational activity preceded detailed discussions on molecules implied in axonal migration. C. elegans mutants were used to introduce second-year medical students to the deleterious effects of gene malfunctioning in neuron response to extracellular biochemical cues and to establish links between molecular function, nervous system structure, and animal behavior. Students observed C. elegans cultures and associated animal behavior alterations with the lack of function of specific axon guidance molecules (the soluble cue netrin/UNC-6 or two receptors, DCC/UNC-40 and UNC-5H). Microscopical observations of these strains, in combination with pan-neuronal GFP expression, allowed optimal visualization of severely affected neurons. Once the list of mutated genes in each strain was displayed, students could also relate abnormal patterns in axon migration/ventral and dorsal nerve cord neuron formation in C. elegans with mutated molecular components homologous to those in humans. SUMMARY OF RESULTS: Students rated the importance and effectiveness of the activity very highly. Ninety-three percent found it helpful to grasp human axonal migration, and all students were surprised with the power of the model in helping to visualize the phenomenon.
Learning the Biochemical Basis of Axonal Guidance: Using Caenorhabditis elegans as a Model.
了解轴突导向的生化基础:以秀丽隐杆线虫为模型
阅读:4
作者:Teixeira-Castro Andreia, Sousa João Carlos, Vieira Cármen, Pereira-Sousa Joana, Vilasboas-Campos Daniela, Marques Fernanda, Pinto-do-à Perpétua, Maciel PatrÃcia
| 期刊: | Biomedicines | 影响因子: | 3.900 |
| 时间: | 2023 | 起止号: | 2023 Jun 16; 11(6):1731 |
| doi: | 10.3390/biomedicines11061731 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
