The In Silico Characterization of a Salicylic Acid Analogue Coding Gene Clusters in Selected Pseudomonas fluorescens Strains.

利用计算机模拟方法对选定的荧光假单胞菌菌株中的水杨酸类似物编码基因簇进行表征

阅读:5
作者:Shehroz Muhammad, Aslam Muneeba, Ali Khan Munazza, Aiman Sara, Gul Afridi Sahib, Khan Asifullah
BACKGROUND: The microbial genome sequences provide solid in silico framework for interpretation of their drug-like chemical scaffolds biosynthetic potentials. Pseudomonas fluorescens strains are metabolically versatile and producing therapeutically important natural products. OBJECTIVES: The key objective of the present study was to mine the publically available data of P. fluorescens strains genomes for putative drug-like metabolites identification. MATERIALS AND METHODS: We implemented the computational biology resources of AntiSMASH and BAGEL3 for the secondary metabolites prediction from P. fluorescens strains genome sequences. The predicted secondary metabolites were evaluated using drug discovery chemoinformatics resources, like Drugbank database search and molecular docking inspection. RESULTS: The analyses unveiled a wide array of chemical scaffolds biosynthesis in different P. fluorescens strains. Subsequently, the drug-like potential evaluation of these metabolites identified few strains, including P. fluorescens PT14, P. fluorescens A5O6, and P. fluorescens FW300-N2E3 that harbor the biosynthetic gene clusters for salicylic acid-like metabolite biosynthesis. The molecular docking inspection of this metabolite against human cyclooxygenase and aldo-keto reductase targets revealed its feasible inhibitory potentials like other salicylate compounds. CONCLUSION: The computational biology and drug discovery analyses identified different gene clusters in P. fluorescens genomes coding for salicylic acid-like chemotypes biosynthesis. These gene clusters may worthy to target through metabolic engineering for the massive production of salicylates-like chemical scaffolds from microbial resources.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。