Road surface semantic segmentation for autonomous driving.

用于自动驾驶的路面语义分割

阅读:3
作者:Zhao Huaqi, Wang Su, Peng Xiang, Pan Jeng-Shyang, Wang Rui, Liu Xiaomin
Although semantic segmentation is widely employed in autonomous driving, its performance in segmenting road surfaces falls short in complex traffic environments. This study proposes a frequency-based semantic segmentation with a transformer (FSSFormer) based on the sensitivity of semantic segmentation to frequency information. Specifically, we propose a weight-sharing factorized attention to select important frequency features that can improve the segmentation performance of overlapping targets. Moreover, to address boundary information loss, we used a cross-attention method combining spatial and frequency features to obtain further detailed pixel information. To improve the segmentation accuracy in complex road scenarios, we adopted a parallel-gated feedforward network segmentation method to encode the position information. Extensive experiments demonstrate that the mIoU of FSSFormer increased by 2% compared with existing segmentation methods on the Cityscapes dataset.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。