The unique contributions of connexin (Cx)37 and Cx40, gap junction-forming proteins that are coexpressed in vascular endothelium, to the recovery of tissues from ischemic injury are unknown. We recently reported that Cx37-deficient (Cx37(-/-)) animals recovered ischemic hindlimb function more quickly and to a greater extent than wild-type (WT) or Cx40(-/-) animals, suggesting that Cx37 limits recovery in the WT animal. Here, we tested the hypothesis that enhanced angiogenesis, arteriogenesis, and vasculogenesis contribute to improved postischemic hindlimb recovery in Cx37(-/-) animals. Ischemia was induced unilaterally in the hindlimbs of WT or Cx37(-/-) mice (isoflurane anesthesia). Postsurgical limb appearance, use, and perfusion were documented during recovery, and the number (and size) of large and small vessels was determined. Native collateral number, predominantly established during embryonic development (vasculogenesis), was also determined in the pial circulation. Both microvascular density in the gastrocnemius of the ischemic limb (an angiogenic field) and the number and tortuosity of larger vessels in the gracilis vasculature (an arteriogenic field) were increased in Cx37(-/-) animals compared with WT animals. Cx37(-/-) mice also had an increased (vs. WT) number of collateral vessels in the pial circulation. These findings suggest that in Cx37(-/-) animals, improved recovery of the ischemic hindlimb involves enhanced vasculogenesis, resulting in increased numbers of collaterals in the hindlimb (and pial circulations) and more extensive collateral remodeling and angiogenesis. These results are consistent with Cx37 exerting a growth-suppressive effect in the vasculature that limits embryonic vasculogenesis as well as arteriogenic and angiogenic responses to ischemic injury in the adult animal.
Cx37 deletion enhances vascular growth and facilitates ischemic limb recovery.
Cx37 缺失可促进血管生长并促进缺血肢体的恢复
阅读:3
作者:Fang Jennifer S, Angelov Stoyan N, Simon Alexander M, Burt Janis M
| 期刊: | American Journal of Physiology-Heart and Circulatory Physiology | 影响因子: | 4.100 |
| 时间: | 2011 | 起止号: | 2011 Nov;301(5):H1872-81 |
| doi: | 10.1152/ajpheart.00683.2011 | 研究方向: | 心血管 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
