Mechanical ventilation (MV) is used as therapy to support critically ill patients; however, the mechanisms by which MV induces lung injury and inflammation remain unclear. Epidermal growth factor receptor (EGFR)-mediated signaling plays a key role in various physiologic and pathologic processes, which include those modulated by mechanical and shear forces, in various cell types. We hypothesized that EGFR-activated signaling plays a key role in ventilator-induced lung injury and inflammation (VILI). To test this hypothesis, we assessed lung vascular and alveolar permeability as well as inflammation, which are cardinal features of VILI, in mice treated with the EGFR inhibitor AG1478. Inhibition of EGFR activity greatly diminished MV-induced lung alveolar permeability and neutrophil accumulation in the bronchoalveolar lavage (BAL) fluid, as compared with vehicle-treated controls. Similarly, AG1478 inhibition diminished lung vascular leak (as assessed by Evans blue extravasation), but it did not affect interstitial neutrophil accumulation. Inhibition of the EGFR pathway also blocked expression of genes induced by MV. However, intratracheal instillation of EGF alone failed to induce lung injury. Collectively, our findings suggest that EGFR-activated signaling is necessary but not sufficient to produce acute lung injury in mice.
Epidermal growth factor receptor (EGFR) regulates mechanical ventilation-induced lung injury in mice.
表皮生长因子受体(EGFR)调节小鼠机械通气引起的肺损伤
阅读:3
作者:Bierman Alexis, Yerrapureddy Adi, Reddy Narsa M, Hassoun Paul M, Reddy Sekhar P
| 期刊: | Translational Research | 影响因子: | 5.900 |
| 时间: | 2008 | 起止号: | 2008 Dec;152(6):265-72 |
| doi: | 10.1016/j.trsl.2008.10.004 | 靶点: | EGFR |
| 研究方向: | 毒理研究 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
