Epidermal growth factor receptor (EGFR) regulates mechanical ventilation-induced lung injury in mice.

表皮生长因子受体(EGFR)调节小鼠机械通气引起的肺损伤

阅读:8
作者:Bierman Alexis, Yerrapureddy Adi, Reddy Narsa M, Hassoun Paul M, Reddy Sekhar P
Mechanical ventilation (MV) is used as therapy to support critically ill patients; however, the mechanisms by which MV induces lung injury and inflammation remain unclear. Epidermal growth factor receptor (EGFR)-mediated signaling plays a key role in various physiologic and pathologic processes, which include those modulated by mechanical and shear forces, in various cell types. We hypothesized that EGFR-activated signaling plays a key role in ventilator-induced lung injury and inflammation (VILI). To test this hypothesis, we assessed lung vascular and alveolar permeability as well as inflammation, which are cardinal features of VILI, in mice treated with the EGFR inhibitor AG1478. Inhibition of EGFR activity greatly diminished MV-induced lung alveolar permeability and neutrophil accumulation in the bronchoalveolar lavage (BAL) fluid, as compared with vehicle-treated controls. Similarly, AG1478 inhibition diminished lung vascular leak (as assessed by Evans blue extravasation), but it did not affect interstitial neutrophil accumulation. Inhibition of the EGFR pathway also blocked expression of genes induced by MV. However, intratracheal instillation of EGF alone failed to induce lung injury. Collectively, our findings suggest that EGFR-activated signaling is necessary but not sufficient to produce acute lung injury in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。