Innovative ceramic-matrix composite substrates with tunable electrical conductivity for high-power applications.

用于高功率应用的具有可调电导率的创新型陶瓷基复合材料基板

阅读:3
作者:Kenfaui Driss, Valdez-Nava Zarel, Laudebat Lionel, Locatelli Marie-Laure, Combettes Céline, Bley Vincent, Dinculescu Sorin, Tenailleau Christophe, Dufour Pascal, Guillemet-Fritsch Sophie
A wide band gap semiconductor power module can operate at higher voltages as compared with its traditional silicon counterpart. However, its insulating system undergoes stronger electric fields at the triple point between the ceramic substrate, the metallic tracks and the encapsulating polymer, which can dramatically reduce its lifespan. Here we report an original concept based on the local modification of the substrate properties to mitigate such electrical stress. Numerical simulations revealed its potential to reduce this constraint by up to 50%. This concept was realized by developing, through a practical approach, a novel substrate made of an AlN-based ceramic (material A) integrating a nanocomposite volume endowed with controlled properties and geometry. This approach implies first the spark plasma sintering of the AlN powder with additives (Y(2)O(3), CaF(2)) to endow the material A with a very low electrical conductivity (σ) and high thermal conductivity (k). Graphene nanoplatelets (GNP) were incorporated within this material to fabricate a nanocomposite with a controlled σ anisotropy that otherwise reached a striking ratio of 10(6) at 20°C for 1.25 vol% GNP. Our approach secondly aimed at developing an effective process allowing to integrate this nanocomposite into the material A with a very high degree of reproducibility. It finally consisted in establishing the electrical contacts on the achieved substrate and encapsulating it for breakdown testing. The novel substrate enabled a mitigation of the electrical constraint by diminishing its intensity and shifting it from the triple point to a less constrained area. It already brought an improvement in breakdown voltage (V(B)) by 15% as compared to the traditional substrate, and revealed the potential for achieving higher V(B) as well. This work lays the foundation for the development of novel multifunctional ceramic-matrix composite substrates sought for power electronics as well as for other potential applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。