Inhibition of in vitro fertilizing capacity of cryopreserved mouse sperm by factors released by damaged sperm, and stimulation by glutathione.

受损精子释放的因子抑制冷冻保存的小鼠精子的体外受精能力,而谷胱甘肽则刺激其体外受精能力

阅读:8
作者:Bath, Mary, L
BACKGROUND: In vitro fertilization (IVF) of eggs by frozen and thawed C57BL/6J mouse sperm is inhibited by dead sperm and enhanced by preincubation of the sperm in calcium-free medium. In other species, the presence of sperm killed by freezing and thawing has been associated with the generation of hydrogen peroxide. METHODOLOGY/PRINCIPAL FINDINGS: The proportion of eggs fertilized by cryopreserved C57BL/6J mouse sperm was increased significantly by increasing the volume of fertilization medium in which sperm and eggs were coincubated. Enhanced fertilization occurred even though the concentration of potentially fertile sperm was decreased fivefold. This suggested that if a putative soluble factor was inhibiting fertilization, dilution of that factor, but not the sperm, should increase the fertilization rate. This was achieved by coincubation of the gametes in cell culture inserts (Transwells) that during incubation were transferred progressively to wells containing fresh fertilization medium. Fertilization rates using inserts were high (66.6+/-2.4% versus 27.3%+/-2.8% in wells alone). On the assumption that the soluble factor could be H(2)O(2), reduced glutathione was added to the fertilization medium. This enhanced fertilization rate significantly (76.6%+/-2.0% versus 21.2%+/-1.9%), while addition of oxidized glutathione did not (82.7%+/-6.5% with reduced glutathione; 44.5+/-8.8% with oxidized glutathione; 47.8%+/-12.1% with no glutathione). Positive effects of reduced glutathione on IVF were also seen with frozen 129S1, FVB, and C3H sperm, and sperm from two lines of genetically modified C57BL/6J mice. CONCLUSIONS/SIGNIFICANCE: IVF in cell culture inserts and addition of glutathione to fertilization medium significantly increased the proportion of eggs fertilized by cryopreserved mouse sperm from four inbred strains, suggesting that reactive oxygen species generated during fertilization inhibit fertilization. The modified IVF techniques developed here enhance the feasibility and efficiency of using cryopreserved sperm from genetically modified lines of inbred mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。