BACKGROUND: Enterococcus faecalis is one of the leading agents of nosocomial infections. To cause diseases, pathogens or opportunistic bacteria have to adapt and survive to the defense systems encountered in the host. One of the most important compounds of the host innate defense response against invading microorganisms is lysozyme. It is found in a wide variety of body fluids, as well as in cells of the innate immune system. Lysozyme could act either as a muramidase and/or as a cationic antimicrobial peptide. Like Staphylococcus aureus, E. faecalis is one of the few bacteria that are completely lysozyme resistant. RESULTS: This study revealed that oatA (O-acetyl transferase) and dlt (D-Alanylation of lipoteicoic acids) genes contribute only partly to the lysozyme resistance of E. faecalis and that a specific transcriptional regulator, the extracytoplasmic function SigV sigma factor plays a key role in this event. Indeed, the sigV single mutant is as sensitive as the oatA/dltA double mutant, and the sigV/oatA/dltA triple mutant displays the highest level of lysozyme sensitivity suggesting synergistic effects of these genes. In S. aureus, mutation of both oatA and dlt genes abolishes completely the lysozyme resistance, whereas this is not the case in E. faecalis. Interestingly SigV does not control neither oatA nor dlt genes. Moreover, the sigV mutants clearly showed a reduced capacity to colonize host tissues, as they are significantly less recovered than the parental JH2-2 strain from organs of mice subjected to intravenous or urinary tract infections. CONCLUSIONS: This work led to the discovery of an original model of lysozyme resistance mechanism which is obviously more complex than those described for other Gram positive pathogens. Moreover, our data provide evidences for a direct link between lysozyme resistance and virulence of E. faecalis.
The extracytoplasmic function sigma factor SigV plays a key role in the original model of lysozyme resistance and virulence of Enterococcus faecalis.
胞外功能σ因子SigV在粪肠球菌溶菌酶抗性和毒力的原始模型中起着关键作用
阅读:5
作者:Le Jeune André, Torelli Riccardo, Sanguinetti Maurizio, Giard Jean-Christophe, Hartke Axel, Auffray Yanick, Benachour Abdellah
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2010 | 起止号: | 2010 Mar 11; 5(3):e9658 |
| doi: | 10.1371/journal.pone.0009658 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
