Presynaptic active zones (AZs) contain many molecules essential for neurotransmitter release and are assembled in a highly organized manner. A network of adaptor proteins known as cytomatrix at the AZ (CAZ) is important for shaping the structural characteristics of AZ. Rab3-interacting molecule (RIM)-binding protein (RBP) family are binding partners of the CAZ protein RIM and also bind the voltage-gated calcium channels (VGCCs) in mice and flies. Here, we investigated the physiological roles of RIMB-1, the homolog of RBPs in the nematode Caenorhabditis elegans RIMB-1 is expressed broadly in neurons and predominantly localized at presynaptic sites. Loss-of-function animals of rimb-1 displayed slight defects in motility and response to pharmacological inhibition of synaptic transmission, suggesting a modest involvement of rimb-1 in synapse function. We analyzed genetic interactions of rimb-1 by testing candidate genes and by an unbiased forward genetic screen for rimb-1 enhancer. Both analyses identified the RIM homolog UNC-10 that acts together with RIMB-1 to regulate presynaptic localization of the P/Q-type VGCC UNC-2/Ca(v)2. We also find that the precise localization of RIMB-1 to presynaptic sites requires presynaptic UNC-2/Ca(v)2. RIMB-1 has multiple FN3 and SH3 domains. Our transgenic rescue analysis with RIMB-1 deletion constructs revealed a functional requirement of a C-terminal SH3 in regulating UNC-2/Ca(v)2 localization. Together, these findings suggest a redundant role of RIMB-1/RBP and UNC-10/RIM to regulate the abundance of UNC-2/Ca(v)2 at the presynaptic AZ in C. elegans, depending on the bidirectional interplay between CAZ adaptor and channel proteins.SIGNIFICANCE STATEMENT Presynaptic active zones (AZs) are highly organized structures for synaptic transmission with characteristic networks of adaptor proteins called cytomatrix at the AZ (CAZ). In this study, we characterized a CAZ protein RIMB-1, named for RIM-binding protein (RBP), in the nematode Caenorhabditis elegans Through systematic analyses of genetic interactions and an unbiased genetic enhancer screen of rimb-1, we revealed a redundant role of two CAZ proteins RIMB-1/RBP and UNC-10/RIM in regulating presynaptic localization of UNC-2/Ca(v)2, a voltage-gated calcium channel (VGCC) critical for proper neurotransmitter release. Additionally, the precise localization of RIMB-1/RBP requires presynaptic UNC-2/Ca(v)2. These findings provide new mechanistic insight about how the interplay among multiple CAZ adaptor proteins and VGCC contributes to the organization of presynaptic AZ.
RIMB-1/RIM-Binding Protein and UNC-10/RIM Redundantly Regulate Presynaptic Localization of the Voltage-Gated Calcium Channel in Caenorhabditis elegans.
RIMB-1/RIM 结合蛋白和 UNC-10/RIM 冗余地调节秀丽隐杆线虫电压门控钙通道的突触前定位
阅读:3
作者:Kushibiki Yuto, Suzuki Toshiharu, Jin Yishi, Taru Hidenori
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2019 | 起止号: | 2019 Oct 30; 39(44):8617-8631 |
| doi: | 10.1523/JNEUROSCI.0506-19.2019 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
