Salt stress is a major constraint on plant growth and yield. Nitrogen (N) fertilizers are known to alleviate salt stress. However, the underlying molecular mechanisms remain unclear. Here, we show that nitrate-dependent salt tolerance is mediated by OsMADS27 in rice. The expression of OsMADS27 is specifically induced by nitrate. The salt-inducible expression of OsMADS27 is also nitrate dependent. OsMADS27 knockout mutants are more sensitive to salt stress than the wild type, whereas OsMADS27 overexpression lines are more tolerant. Transcriptomic analyses revealed that OsMADS27 upregulates the expression of a number of known stress-responsive genes as well as those involved in ion homeostasis and antioxidation. We demonstrate that OsMADS27 directly binds to the promoters of OsHKT1.1 and OsSPL7 to regulate their expression. Notably, OsMADS27-mediated salt tolerance is nitrate dependent and positively correlated with nitrate concentration. Our results reveal the role of nitrate-responsive OsMADS27 and its downstream target genes in salt tolerance, providing a molecular mechanism for the enhancement of salt tolerance by nitrogen fertilizers in rice. OsMADS27 overexpression increased grain yield under salt stress in the presence of sufficient nitrate, suggesting that OsMADS27 is a promising candidate for the improvement of salt tolerance in rice.
Nitrate-responsive OsMADS27 promotes salt tolerance in rice.
硝酸盐响应基因OsMADS27可提高水稻的耐盐性
阅读:4
作者:Alfatih Alamin, Zhang Jing, Song Ying, Jan Sami Ullah, Zhang Zi-Sheng, Xia Jin-Qiu, Zhang Zheng-Yi, Nazish Tahmina, Wu Jie, Zhao Ping-Xia, Xiang Cheng-Bin
| 期刊: | Plant Communications | 影响因子: | 11.600 |
| 时间: | 2023 | 起止号: | 2023 Mar 13; 4(2):100458 |
| doi: | 10.1016/j.xplc.2022.100458 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
