G protein-coupled receptors (GPCRs) are significant drug targets, but their potential in cancer therapy remains underexplored. Conventional GPCR agonists or antagonists have shown limited effectiveness in cancer treatment, necessitating new GPCR-targeting strategies for more effective therapies. This study discovers that Yersinia pestis LcrV, a crucial linker protein for plague infection, acts as a biased agonist of a GPCR, the formyl peptide receptor 1 (FPR1). The LcrV protein induces unique conformational changes in FPR1, resulting in G proteins being activated in a distinctive state without subunit dissociation. This leads to a biased signaling profile characterized by cyclic adenosine monophosphate (cAMP) responses and β-arrestin2 recruitment, but not calcium mobilization. In FPR1-expressing triple-negative breast cancer (TNBC) cells, LcrV bi-directionally modulates intracellular signaling pathways, downregulating extracellular signal-regulated kinases (ERK1/2) and Akt pathways while upregulating Jun N-terminal kinase (JNK) and p38 pathways. This dual modulation results in cell cycle arrest and the inhibition of TNBC cell proliferation. In TNBC xenograft mouse models, long-term LcrV treatment inhibits tumor growth more effectively than a conventional FPR1 antagonist. Additionally, LcrV treatment reprograms tumor cells by reducing stemness-associated proteins OCT4 and c-MYC. Our findings highlight the potential of biased GPCR agonists as a novel GPCR-targeting strategy for cancer treatment.
Discovery of Yersinia LcrV as a novel biased agonist of formyl peptide receptor 1 to bi-directionally modulate intracellular kinases in triple-negative breast cancer.
发现耶尔森氏菌 LcrV 是一种新型的偏向性甲酰肽受体 1 激动剂,可双向调节三阴性乳腺癌中的细胞内激酶
阅读:3
作者:Ge Yunjun, Guan Huiwen, Li Ting, Wang Jie, Ying Liang, Guo Shuhui, Lu Jinjian, Ye Richard D, Wu Guosheng
| 期刊: | Acta Pharmaceutica Sinica B | 影响因子: | 14.600 |
| 时间: | 2025 | 起止号: | 2025 Jul;15(7):3646-3662 |
| doi: | 10.1016/j.apsb.2025.04.030 | 研究方向: | 细胞生物学 |
| 疾病类型: | 乳腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
