Hybridization between Xian/indica (XI) and Geng/japonica (GJ) rice combined with utilization of plant ideotypes has greatly contributed to yield improvements in modern GJ rice in China over the past 50 years. To explore the genomic basis of improved yield and disease resistance in GJ rice, we conducted a large-scale genomic landscape analysis of 816 elite GJ cultivars representing multiple eras of germplasm from China. We detected consistently increasing introgressions from three XI subpopulations into GJ cultivars since the 1980s and found that the XI genome introgressions significantly increased the grain number per panicle (GN) and decreased the panicle number per plant. This contributed to the improvement of plant type during modern breeding, changing multi-tiller plants to moderate tiller plants with a large panicle size and increasing the blast resistance. Notably, we found that key gene haplotypes controlling plant architecture, yield components, and pest and disease resistance, including IPA1, SMG1, DEP3, Pib, Pi-d2, and Bph3, were introduced from XI rice by introgression. By GWAS analysis, we detected a GN-related gene Gnd5, which had been consistently introgressed from XI into GJ cultivars since the 1980s. Gnd5 is a GRAS transcription factor gene, and Gnd5 knockout mutants showed a significant reduction in GN. The estimated genetic effects of genes varied among different breeding locations, which explained the distinct introgression levels of XI gene haplotypes, including Gnd5, DEP3, etc., to these GJ breeding pedigrees. These findings reveal the genomic contributions of introgressions from XI to the trait improvements of GJ rice cultivars and provide new insights for future rice genomic breeding.
Genomic insights on the contribution of introgressions from Xian/Indica to the genetic improvement of Geng/Japonica rice cultivars.
基因组学见解揭示了来自西安/籼稻的基因渗入对耿/粳稻品种遗传改良的贡献
阅读:6
作者:Cui Di, Zhou Han, Ma Xiaoding, Lin Zechuan, Sun Linhua, Han Bing, Li Maomao, Sun Jianchang, Liu Jin, Jin Guixiu, Wang Xianju, Cao Guilan, Deng Xing Wang, He Hang, Han Longzhi
| 期刊: | Plant Communications | 影响因子: | 11.600 |
| 时间: | 2022 | 起止号: | 2022 May 9; 3(3):100325 |
| doi: | 10.1016/j.xplc.2022.100325 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
