Skill Learning by Autonomous Robotic Playing Using Active Learning and Exploratory Behavior Composition.

利用主动学习和探索性行为组合进行自主机器人游戏技能学习

阅读:4
作者:Hangl Simon, Dunjko Vedran, Briegel Hans J, Piater Justus
We consider the problem of autonomous acquisition of manipulation skills where problem-solving strategies are initially available only for a narrow range of situations. We propose to extend the range of solvable situations by autonomous play with the object. By applying previously-trained skills and behaviors, the robot learns how to prepare situations for which a successful strategy is already known. The information gathered during autonomous play is additionally used to train an environment model. This model is exploited for active learning and the generation of novel preparatory behaviors compositions. We apply our approach to a wide range of different manipulation tasks, e.g., book grasping, grasping of objects of different sizes by selecting different grasping strategies, placement on shelves, and tower disassembly. We show that the composite behavior generation mechanism enables the robot to solve previously-unsolvable tasks, e.g., tower disassembly. We use success statistics gained during real-world experiments to simulate the convergence behavior of our system. Simulation experiments show that the learning speed can be improved by around 30% by using active learning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。