Cell redistribution of G quadruplex-structured DNA is associated with morphological changes of nuclei and nucleoli in neurons during tau pathology progression.

在 tau 病理进展过程中,G 四链体结构 DNA 的细胞内重新分布与神经元细胞核和核仁的形态变化有关

阅读:24
作者:Comptdaer Thomas, Tardivel Meryem, Schirmer Claire, Buée Luc, Galas Marie-Christine
While the double helical structure has long been its iconic representation, DNA is structurally dynamic and can adopt alternative secondary configurations. Specifically, guanine-rich DNA sequences can fold in guanine quadruplexes (G4) structures. These G4 play pivotal roles as regulators of gene expression and genomic stability, and influence protein homeostasis. Despite their significance, the association of G4 with neurodegenerative diseases such as Alzheimer's disease (AD) has been underappreciated. Recent findings have identified DNA sequences predicted to form G4 in sarkosyl-insoluble aggregates from AD brains, questioning the involvement of G4-structured DNA (G4 DNA) in the pathology. Using immunofluorescence coupled to confocal microscopy analysis we investigated the impact of tau pathology, a hallmark of tauopathies including AD, on the distribution of G4 DNA in murine neurons and its relevance to AD brains. In healthy neurons, G4 DNA is detected in nuclei with a notable presence in nucleoli. However, in a transgenic mouse model of tau pathology (THY-Tau22), early stages of the disease exhibit an impairment in the nuclear distribution of G4 DNA. In addition, G4 DNA accumulates in the cytoplasm of neurons exhibiting oligomerized tau and oxidative DNA damage. This altered distribution persists in the later stage of the pathology when larger tau aggregates are present. Still cytoplasmic deposition of G4 DNA does not appear to be a critical factor in the tau aggregation process. Similar patterns are observed in neurons from the AD cortex. Furthermore, the disturbance in G4 DNA distribution is associated with various changes in the size of neuronal nuclei and nucleoli, indicative of responses to stress and the activation of pro-survival mechanisms. Our results shed light on a significant impact of tau pathology on the dynamics of G4 DNA and on nuclear and nucleolar mechanobiology in neurons. These findings reveal new dimensions in the etiopathogenesis of tauopathies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。