Severe dengue often presents as shock syndrome with enhanced vascular permeability and plasma leakage into tissue spaces. In vitro studies have documented the role of Src family kinases (SFKs) and RhoA-kinases (ROCK) in dengue virus serotype 2 (DENV2)-induced endothelial permeability. Here, we show that the FDA-approved SFK inhibitors Bosutinib, Vandetanib and Ponatinib, as well as the ROCK inhibitors, Netarsudil and Ripasudil significantly inhibit DENV2-induced endothelial permeability. In cultured telomerase immortalized human microvascular endothelial cells (HMEC-1), treatment with these inhibitors reduced the phosphorylation of VE-Cadherin, Src and myosin light chain 2 (MLC2) proteins that were upregulated during DENV2 infection. It also prevented the loss of VE-Cadherin from the inter-endothelial cell junctions induced by viral infection. In in-vivo studies using DENV2-infected AG129 IFN receptor-α/β/γ deficient mice, ponatinib, when administered 24âh post-infection onwards, demonstrated significant benefits in improving body weight, clinical outcomes, and survival rates. While all virus-infected, untreated mice died by day-10 post-infection, 80% of the ponatinib-treated mice survived, and approximately 60% were still alive at the end of the 15-day observation period. The treatment also significantly reduced disease severity factors such as vascular leakage, thrombocytopenia; mRNA transcript levels of proinflammatory cytokines such as IL-1β and TNF-α; and restored liver function. Comparable effects were observed even when ponatinib treatment was initiated after symptom onset. The results highlight ponatinib as an effective therapeutic option in severe dengue; and also a similar potential for other FDA- approved SFK and ROCK inhibitors.
Ponatinib and other clinically approved inhibitors of Src and Rho-A kinases abrogate dengue virus serotype 2- induced endothelial permeability.
Ponatinib 和其他经临床批准的 Src 和 Rho-A 激酶抑制剂可消除登革病毒 2 型诱导的内皮通透性
阅读:4
作者:Mishra Srishti Rajkumar, Modak Ayan, Awasthi Mansi, Sobha Archana, Sreekumar Easwaran
| 期刊: | Virulence | 影响因子: | 5.400 |
| 时间: | 2025 | 起止号: | 2025 Dec;16(1):2489751 |
| doi: | 10.1080/21505594.2025.2489751 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
