Somatostatin contributes to in vivo gamma oscillation modulation and odor discrimination in the olfactory bulb.

生长抑素有助于体内嗅球的γ振荡调节和气味辨别

阅读:3
作者:Lepousez Gabriel, Mouret Aurélie, Loudes Catherine, Epelbaum Jacques, Viollet Cécile
Neuropeptides are systematically encountered in local interneurons, but their functional contribution in neural networks is poorly documented. In the mouse main olfactory bulb (MOB), somatostatin is mainly concentrated in local GABAergic interneurons restricted to the external plexiform layer (EPL). Immunohistochemical experiments revealed that the sst2 receptor, the major somatostatin receptor subtype in the telencephalon, is expressed by mitral cells, the MOB principal cells. As odor-activated mitral cells synchronize and generate gamma oscillations of the local field potentials, we investigated whether pharmacological manipulations of sst2 receptors could influence these oscillations in freely behaving mice. In wild-type, but not in sst2 knock-out mice, gamma oscillation power decreased lastingly after intrabulbar injection of an sst2-selective antagonist (BIM-23627), while sst2-selective agonists (octreotide and L-779976) durably increased it. Sst2-mediated oscillation changes were correlated with modifications of the dendrodendritic synaptic transmission between mitral and granule cells. Finally, bilateral injections of BIM-23627 and octreotide respectively decreased and increased odor discrimination performances. Together, these results suggest that endogenous somatostatin, presumably released from EPL interneurons, affects gamma oscillations through the dendrodendritic reciprocal synapse and contributes to olfactory processing. This provides the first direct correlation between synaptic, oscillatory, and perceptual effects induced by an intrinsic neuromodulator.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。