Chaos has emerged as a significant area of research, with the control of chaotic systems being central to this field. This study proposes a novel trigonometric feedback control strategy to regulate Hopf bifurcation in a four-dimensional hyperchaotic system featuring coexisting attractors. By introducing a nonlinear controller [Formula: see text], we establish the stability criteria for equilibrium points under the parameter space a>0, b>0, and [Formula: see text]. Theoretical analysis reveals that the system undergoes a supercritical Hopf bifurcation at [Formula: see text], leading to the emergence of stable limit cycles. Numerical simulations validate the control efficacy: periodic oscillations are observed at dâ=â-1, while equilibrium convergence is achieved at dâ=â-3. Phase portrait analysis and Lyapunov exponent spectra confirm the suppression of chaotic dynamics. This work advances the theoretical framework for bifurcation control in high-dimensional chaotic systems and offers practical implications for secure communication applications.
Triangular function feedback control for chaotic systems featuring coexisting attractors.
具有共存吸引子的混沌系统的三角函数反馈控制
阅读:5
作者:Zhu Yingfang, Hu Yuan, Zhu Erxi
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Jun 3; 20(6):e0324331 |
| doi: | 10.1371/journal.pone.0324331 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
