Programmable mechanical materials often require dynamic stiffness adaptability, but existing solutions face challenges with slow response times and limited precision. This study introduces magnetically tunable stiffness metamaterials (MTSM) that utilize a bioinspired ternary programming framework to achieve rapid and precise stiffness modulation. Drawing inspiration from biological sarcomeres, which naturally adjust stiffness through structural changes, the MTSM design employs direct ink writing, a 4D printing method, to incorporate neodymium microparticles and a styrene-isoprene-styrene polymer matrix. This approach enables the metamaterial to transition between three distinct stiffness states-soft, moderate, and stiff-through structural deformation controlled by magnetic torque. Integration of MTSM into a 3D array further enhances its versatility, allowing multi-layer stiffness adjustments under magnetic fields. The MTSM array achieves an impressive 390 percent stiffness modulation range and rapid changes in response to an external magnetic field, surpassing the limitations of prior designs. These findings emphasize the potential of ternary programming in MTSM as a foundation for creating next-generation programmable mechanical systems capable of rapid and efficient adaptability.
Bioinspired, Rapidly Responsive Magnetically Tunable Stiffness Metamaterials.
仿生快速响应磁性可调刚度超材料
阅读:4
作者:Chung Gooyoon, Quang Huy Le, Kim Jung Hyun, Yoo Jeongmin, Seol Seung Kwon, Park Yoonseok
| 期刊: | Advanced Materials | 影响因子: | 26.800 |
| 时间: | 2025 | 起止号: | 2025 Aug;37(34):e2505880 |
| doi: | 10.1002/adma.202505880 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
