Kinesin motors can induce a buckling instability in a microtubule with a fixed minus end. Here we show that by modifying the surface with a protein-repellent functionalization and using clusters of kinesin motors, the microtubule can exhibit persistent oscillatory motion resembling the beating of sperm flagella. The observed period is of the order of 1 min. From the experimental images we theoretically determine a distribution of motor forces that explains the observed shapes using a maximum likelihood approach. A good agreement is achieved with a small number of motor clusters acting simultaneously on a microtubule. The tangential forces exerted by a cluster are mostly in the range 0-8 pN toward the microtubule minus end, indicating the action of 1 or 2 kinesin motors. The lateral forces are distributed symmetrically and mainly below 10 pN, while the lateral velocity has a strong peak around zero. Unlike well-known models for flapping filaments, kinesins are found to have a strong "pinning" effect on the beating filaments. Our results suggest new strategies to utilize molecular motors in dynamic roles that depend sensitively on the stress built-up in the system.
Flagella-like Beating of a Single Microtubule.
单根微管的鞭毛样摆动
阅读:6
作者:Vilfan Andrej, Subramani Smrithika, Bodenschatz Eberhard, Golestanian Ramin, Guido Isabella
| 期刊: | Nano Letters | 影响因子: | 9.100 |
| 时间: | 2019 | 起止号: | 2019 May 8; 19(5):3359-3363 |
| doi: | 10.1021/acs.nanolett.9b01091 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
